
SAND20XX-XXXXR
LDRD PROJECT NUMBER: 173667
LDRD PROJECT TITLE: Active Learning in the Era of Big Data
PROJECT TEAM MEMBERS: Kevin Jamieson, Warren L. Davis IV

ABSTRACT:

Active learning methods automatically adapt data collection by selecting the most informative

samples in order to accelerate machine learning. Because of this, real-world testing and

comparing active learning algorithms requires collecting new datasets (adaptively), rather than

simply applying algorithms to benchmark datasets, as is the norm in (passive) machine learning

research. To facilitate the development, testing and deployment of active learning for real

applications, we have built an open-source software system for large-scale active learning

research and experimentation. The system, called NEXT, provides a unique platform for real-

world, reproducible active learning research. This paper details the challenges of building the

system and demonstrates its capabilities with several experiments. The results show how

experimentation can help expose strengths and weaknesses of active learning algorithms, in

sometimes unexpected and enlightening ways.

INTRODUCTION:

We use the term “active learning” to refer to algorithms that employ adaptive data collection in

order to accelerate machine learning. By adaptive data collection we mean processes that

automatically adjust, based on previously collected data, to collect the most useful data as

quickly as possible. This broad notion of active learning includes multi-armed bandits, adaptive

data collection in unsupervised learning (e.g. clustering, embedding, etc.), classification,

regression, and sequential experimental design. Perhaps the most familiar example of active

learning arises in the context of classification. These active learning algorithms select examples

for labeling in a sequential, data-adaptive fashion, as opposed to passive learning algorithms

based on preselected training data.

The key to active learning is adaptive data collection. Because of this, real-world testing and

comparing active learning algorithms requires collecting new datasets (adaptively), rather than

simply applying algorithms to benchmark datasets, as is the norm in (passive) machine learning

research. In this adaptive paradigm, algorithm and network response time, human fatigue, the

differing label quality of humans, and the lack of i.i.d. responses are all real-world concerns of

implementing active learning algorithms. Due to many of these conditions being impossible to

faithfully simulate active learning algorithms must be evaluated on real human participants.

SAND2015-9475R

Adaptively collecting large-scale datasets can be difficult and time-consuming. As a result,

active learning has remained a largely theoretical research area, and practical algorithms and

experiments are few and far between. Most experimental work in active learning with real-world

data is simulated by letting the algorithm adaptively select a small number of labeled examples

from a large labeled dataset. This requires a large, labeled data set to begin with, which limits

the scope and scale of such experimental work. Also, it does not address the practical issue of

deploying active learning algorithms and adaptive data collection for real applications.

To address these issues, we have built a software system called NEXT, which provides a unique

platform for real-world, large-scale, reproducible active learning research, enabling

● machine learning researchers to easily deploy and test new active learning algorithms;

● applied researchers to employ active learning methods for real-world applications.

At the heart of active learning is a process for sequentially and adaptively gathering data most

informative to the learning task at hand as quickly as possible. At each step, an algorithm must

decide what data to collect next. The data collection itself is often from human helpers who are

asked to answer queries, label instances or inspect data. Crowdsourcing platforms such as

Amazon’s Mechanical Turk or Crowd Flower provide access to potentially thousands of users

answering queries on-demand. Parallel data collection at a large scale imposes design and

engineering challenges unique to active learning due to the continuous interaction between data

collection and learning.

This report details the challenges of building active learning systems and our open-source

solution, the NEXT system (available at https://github.com/kgjamieson/NEXT). We also

demonstrate the system's capabilities for real active learning experimentation. The results show

how experimentation can help expose strengths and weaknesses of well-known active learning

algorithms, in sometimes unexpected and enlightening ways.

DETAILED DESCRIPTION OF EXPERIMENT/METHOD:

System Functionality - A data flow diagram for NEXT is presented in Figure 1. Consider an

individual client among the crowd tasked with answering a series of classification questions. The

client interacts with NEXT through a website which requests a new query to be presented from

the NEXT web API. Tasked with potentially handling thousands of such requests

simultaneously, the API will enqueue the query request to be processed by a worker pool

(workers can be thought of as processes living on one or many machines pulling from the same

queue). Once a worker accepts the job, it is routed through the worker’s algorithm manager

(described in the extensibility section below) and the algorithm then chooses a query based on

previously collected data and sufficient statistics. The query is then sent back to the client

through the API to be displayed.

After the client answers the query, the same initial process as above is repeated but this time the

answer is routed to the ‘processAnswer’ endpoint of the algor ithm. Since multiple users are

getting queries and reporting answers at the same time, there is a potential for two different

workers to attempt to update the model, or the statistics used to generate new queries, at the same

time, and potentially overwrite each other’s work. A simple way NEXT avoids this race

condition is to provide a locking queue to each algorithm so that when a worker accepts a job

from this queue, the queue is locked until that job is finished. Hence, when the answer is reported

to the algorithm, the ‘processAnswer’ code block may either update the model asynchronously

itself, or submit a ‘modelUpdate’ job to this locking model update queue to process the answer

later synchronously (see Section 4 for details). After processing the answer, the worker returns

an acknowledgement response to the client.

Of this data flow, NEXT handles the API, enqueueing and scheduling of jobs, and algorithm

management. The researcher interested in deploying their algorithm is responsible for

implementing getQuery, processAnswer and updateModel. Figure 2 shows pseudo-code for the

functions that must be implemented for each algorithm in the NEXT system.

A key challenge here is latency. A getQuery request uses the current learned model to decide

what queries to serve next. Humans will notice delays greater than roughly 400 ms. Therefore, it

is imperative that the system can receive and process a response, update the model, and select the

next query within 400 ms. Accounting for 100-200 ms in communication latency each way, the

system must perform all necessary processing within 50-100 ms. While in some applications one

can compute good queries offline and serve them as needed without further computation, other

applications, such as contextual bandits for personalized content recommendation, require that

the query depend on the context provided by the user (e.g. their cookies) and consequently, must

be computed in real time.

Realtime Computing - Research in active learning focuses on reducing the sample complexity

of the learning process (i.e., minimizing number of labeled and unlabeled examples needed to

learn an accurate model) and sometimes addresses the issue of computational complexity. In the

latter case, the focus is usually on polynomial-time algorithms, but not necessarily realtime

algorithms. Practical active learning systems face a tradeoff between how frequently models are

updated and how carefully new queries are selected. If the model is updated less frequently, then

time can be spent on carefully selecting a batch of new queries. However, selecting in large

batches may potentially reduce some of the gains afforded by active learning, since later queries

will be based on old, stale information. Updating the model frequently may be possible, but then

the time available for selecting queries may be very short, resulting in suboptimal selections and

again potentially defeating the aim of active learning. Managing this tradeoff is the chief

responsibility of the algorithm designer, but to make these design choices, the algorithm designer

must be able to easily gauge the effects of different algorithmic choices. In the NEXT system,

the tradeoff is explicitly managed by mod- ifying when and how often the updateModel

command is run and what it does. The system helps with making these decisions by providing

extensive dashboards describing both the statistical and computational performance of the

algorithms.

Reproducible research - Publishing data and software needed to reproduce experimental results

is essential to scientific progress in all fields. Due to the adaptive nature of data collection in

active learning experiments, it is not enough to simply publish data gathered in a previous

experiment. For other researchers to recreate the experiment, the must be able to also reconstruct

the exact adaptive process that was used to collect the data. This means that the complete system,

including any web-facing crowd sourcing tools, not just algorithm code and data, must be made

publicly available and easy to use. By leveraging cloud computing, NEXT abstracts away the

difficulties of building a data collection system and lets the researcher focus on active learning

algorithm design. Any other researcher can replicate an experiment with just a few keystrokes in

less than one hour by just using the same experiment initialization parameters.

Expert data collection for the non-expert - NEXT puts state-of-the-art active learning

algorithms in the hands of non-experts interested in collecting data in more efficient ways. This

includes psychologists, social scientists, biologists, security analysts and researchers in any other

field in which large amounts of data is collected, sometimes at a large dollar cost and time

expense. Choosing an appropriate active learning algorithm is perhaps an easier step for non-

experts compared to data collection. While there exist excellent tools to help researchers perform

relatively simple experiments on Mechanical Turk (e.g. PsiTurk [1] or AutoMan [2]),

implementing active learning to collect data requires building a sophisticated system like the one

described in this paper. To determine the needs of potential users, the NEXT system was built in

close collaboration with cognitive scientists at our home institution. They helped inform design

decisions and provided us with participants to beta-test the system in a real-world environment.

Indeed, the examples used in this paper were motivated by related studies developed by our

collaborators in psychology.

NEXT is accessible through a REST Web API and can be easily deployed in the cloud with

minimal knowledge and expertise using automated scripts. NEXT provides researchers a set of

example templates and widgets that can be used as graphical user interfaces to collect data from

participants.

Multiple Algorithms and Extensibility - NEXT provides a platform for applications and

algorithms. Applications are general active learning tasks, such as linear classification, and

algorithms are particular implementations of that application (e.g., random sampling or

uncertainty sampling with a C-SVM). Experiments involve one application type but they may

involve several different algorithms, enabling the evaluation and comparison of different

algorithms. The algorithm manager in Figure 1 is responsible for routing each query and reported

answer to the algorithms involved in an experiment. For experiments involving multiple

algorithms, this routing could be round-robin, randomized, or optimized in a more sophisticated

manner. For example, it is possible to implement a multi-armed bandit algorithm inside the

algorithm manager in order to select algorithms adaptively to minimize some notion of regret.

Each application defines an algorithm management module and a contract for the three functions

of active learning: getQuery, processAnswer, and modelUpdate as described in Figure 2. Each

algorithm implemented in NEXT will gain access to a locking synchronous queue for model

updates, logging functionality, automated dashboards for performance statistics and timing, load

balancing, and graphical user interfaces for participants. To implement a new algorithm, a

developer must write the associated getQuery, processAnswer, and updateModel functions in

Python; the rest is handled automatically by NEXT. We hope this ease of use will encourage

researchers to experiment with and compare new active learning algorithms. NEXT is hosted on

Github and we urge users to push their local application and algorithm

RESULTS:

NEXT is capable of hosting any active (or passive) learning application. To demonstrate the

capabilities of the system, we look at just one simple application motivated by cognitive science

studies. The collected raw data along with instructions to easily reproduce these examples, which

can be used as templates to extend, are available on the NEXT project page.

We consider is a pure-exploration problem in the dueling bandits framework [3], based on the

New Yorker Caption Contest (data provided by Robert Mankoff at The New Yorker). Each week

New Yorker readers are invited to submit captions for a cartoon, and a winner is picked from

among these entries. We used a dataset from the contest for our experiments. Participants in our

experiment are shown a cartoon along with two captions. Each participant’s task is to pick the

caption they think is the funnier of the two. This is repeated with many caption pairs and

different participants. The objective of the learning algorithm is to determine which caption

participants think is the funniest overall as quickly as possible (i.e., using as few comparative

judgments as possible). In our experiments, we chose an arbitrary cartoon and n = 25 arbitrary

captions from a curated set from the New Yorker dataset (the cartoon and all 25 captions can be

found in [0]). The number of captions was limited to 25 primarily to keep the experimental dollar

cost reasonable, but the NEXT system is capable of handling arbitrarily large numbers of

captions (arms) and duels.

Dueling Bandit Algorithms

There are several notions of a “best” arm in the dueling bandit framework, including the

Condorcet, Copeland, and Borda criteria. We focus on the Borda criterion in this experiment for

two reasons. First, algorithms based on the Condorcet or Copeland criterion generally require

sampling all 25-choose-2 = 300 possible pairs of arms/captions multiple times [4, 3]. Algorithms

based on the Borda criterion do not necessarily require such exhaustive sampling, making them

more attractive for large-scale problems [5]. Second, one can reduce dueling bandits with the

Borda criterion to the standard multi-armed bandit problem using a scheme known as the Borda

Reduction (BR) [5], allowing one to use a number of well-known and tested bandit algorithms.

The algorithms considered in our experiment are: random uniform sampling with BR, Successive

Elimination with BR [6], UCB with BR [7], Thompson Sampling with BR [8], and Beat t he

Mean [9] which was originally designed for identifying the Condorcet winner (see [0] for more

implementation details).

Experimental Setup and Results

We posted 1250 NEXT tasks to Mechanical Turk each of which asked a unique participant to

make 25 comparison judgments for $0.15. For each comparative judgment, one of the five

algorithms was chosen uniformly at random to select the caption pair and the participant’s

decision was used to update that algorithm only. Each algorithm ranked the captions in order of

the empirical Borda score estimates, except the Beat the Mean algorithm, which used its

modified Borda score [9]. To compare the quality of these results, we collected data in two

different ways. First, we took union of the top-5 captions from each algorithm, resulting in 8 “top

captions,” and asked a different set of 1497 participants to vote for the funniest of these 8 (one

vote per participant); we denote this the plurality vote ranking. The number of captions shown to

each participant was limited to 8 for practical reasons (e.g., display, voting ease).

The results of the experiment are summarized in the table. Each row

corresponds to one of the 8 top captions and the columns correspond to different algorithms.

Each table entry is the Borda score estimated by the corresponding algorithm, followed by a

bound on its standard deviation. The bound is based on a Bernoulli model for the responses and

is simply �
�

��
, where k is the number of judgments collected for the corresponding caption

(which depends on the algorithm). The relative ranking of the scores is what is relevant here, but

the uncertainties given an indication of each algorithm’s certainty of these scores. In the table,

each algorithm’s best guess at the “funniest” captions are highlighted in decreasing order with

darker to lighter shades.

Overall, the predicted captions of the algorithms, which generally optimize for the Borda

criterion, appear to be in agreement with the result of the plurality vote. One thing that should be

emphasized is that the uncertainty (standard deviation) of the top arm scores of Thompson

Sampling and UCB is about half the uncertainty observed for the top three arms of the other

methods, which suggests that these algorithms can provide confident answers with 1/4 of the

samples needed by other algorithms. This is the result of Thompson Sampling and UCB being

more aggressive and adaptive early on, compared to the other methods, and therefore we

recommend them for applications of this sort. We conclude that Thompson Sampling and UCB

perform best for this application and require significantly fewer samples than non-adaptive

random sampling or other bandit algorithms. The results of a replication of this study can be

found in [0], from which the same conclusions can be made.

DISCUSSION:

The entire NEXT system was designed with machine learning researchers and practitioners in

mind rather than engineers with deep systems background. NEXT is almost completely written

in Python, but algorithms can be implemented in any programming language and wrapped in a

python wrapper. We elected to use a variety of startup scripts and Docker for deployment to

automate the provisioning process and minimize configuration issues. Details on specific

software packages used can be found in [0]

Many components of NEXT can be scaled to work in a distributed environment. For example,

serving many (near) simultaneous ‘getQuery’ requests is straightforward; one can simply enlarge

the pool of workers by launching additional slave machines and point them towards the web

request queue, just like typical web-apps are scaled. This approach to scaling active learning has

been studied rigorously [15]. Processing tasks such as data fitting and selection can also be

accelerated using standard distributed platforms and machine learning packages (see next

section).

A more challenging scaling issue arises in the learning process. Active learning algorithms

update models sequentially as data are collected and the models guide the selection of new data.

Recall that this serial process is handled by a model update queue. When a worker accepts a job

from the queue, the queue is locked until that job is finished. The processing times required for

model fitting and data selection introduce latencies that may reduce possible speedups afforded

by active learning compared to passive learning (since the rate of ‘getQuery’ requests could

exceed the processing rate of the learning algorithm).

If the number of algorithms running in parallel outnumber the number of workers dedicated to

serving the synchronous locking model update queues, performance can be improved by adding

more slave machines, and thus workers, to process the queues. Simulating a load with stress-tests

and inspecting the provided dashboards on NEXT of CPU, memory, queue size, model-staleness,

etc. makes deciding the number of machines for an expected load a straightforward task. An

algorithm in NEXT could also bypass the locking synchronous queue by employing

asynchronous schemes like [16] directly in processAnswer. This could speed up processing

through parallelization, but could reduce active learning speedups since workers may overwrite

the previous work of others.

ANTICIPATED IMPACT:

There have been some examples of deployed active learning with human feedback; for human

perception [11, 17], interactive search and citation screening [18, 19], and in particular by

research groups from industry, for web content personalization and contextual advertising [20,

21]. However, these remain special purpose implementations, while the proposed NEXT system

provides a flexible and general-purpose active learning platform that is versatile enough to

develop, test, and field any of these specific applications. Moreover, previous real-world

deployments have been difficult to replicate. NEXT could have a profound effect on research

reproducibility; it allows anyone to easily replicate past (and future) algorithm implementations,

experiments, and applications.

There exist many sophisticated libraries and systems for performing machine learning at scale.

Vowpal Wabbit [22], MLlib [23], Oryx [24] and GraphLab [25] are all excellent examples of

state-of-the- art software systems designed to perform inference tasks like classification,

regression, or clustering at enormous scale. Many of these systems are optimized for operating

on a fixed, static dataset, making them incomparable to NEXT. But some, like Vowpal Wabbit

have some active learning support. The difference between these systems and NEXT is that their

goal was to design and implement the best possible algorithms for very specific tasks that will

take the fullest advantage of each system’s own capabilities. These systems provide great

libraries of machine learning tools, whereas NEXT is an experimental platform to develop, test,

and compare active learning algorithms and to allow practitioners to easily use active learning

methods for data collection. NEXT is a system designed to give machine learning researchers

and applied data scientists the tools necessary to understand the best ways to adaptively collect

data and to actively learn.

In the crowd-sourcing space there exist excellent tools like PsiTurk [1], AutoMan [2], and

Crowd- Flower [26] that provide functionality to simplify various aspects of crowdsourcing,

including automated task management and quality assurance controls. While successful in this

aim, these crowd-programming libraries do not incorporate the necessary infrastructure for

deploying active learning across participants or adaptive data acquisition strategies. NEXT

provides a unique platform for developing active crowdsourcing capabilities and may play a role

in optimizing the use of human- computational resources like those discussed in [27].

Finally, while systems like Oryx [24] and Velox [28] that leverage Apache Spark are made for

deployment on the web and model serving, they support very specific types of models because

they were optimized for that purpose, limiting their versatility and applicability. They were also

built for an audience with a greater familiarity with systems and understandably prioritize

computational performance over, for example, the human-time it might take a cognitive scientist

or active learning theorist to figure out how to actively crowd-source a large human-subject

study using Amazon’s Mechanical Turk.

At the time of this submission, NEXT has been used to ask humans hundreds of thousands of

actively selected queries in ongoing cognitive science studies. Working closely with cognitive

scientists who relied on the system for their research helped us make NEXT predictable, reliable,

easy to use and, we believe, ready for everyone.

Communication - Publications

Non-stochastic Best Arm Identification and Hyperparameter Optimization, Kevin Jamieson and
Ameet Talwalkar, Submitted, 2015.

Sparse Dueling Bandits, Kevin Jamieson, Sumeet Katariya, Atul Deshpande, and Robert
Nowak, AISTATS, 2015.PDF

Best-arm identification algorithms for multi-armed bandits in the fixed confidence setting, Kevin
Jamieson and Robert Nowak, CISS, 2014. PDF

lil' UCB : An Optimal Exploration Algorithm for Multi-Armed Bandits, Kevin Jamieson, Matt
Malloy, Robert Nowak, and Sebastien Bubeck, COLT, 2014. PDF

On Finding the Largest Mean Among Many, Kevin Jamieson, Matt Malloy, Robert Nowak, and
Sebastien Bubeck,Asilomar, 2013. PDF

NEXT: A System for Real-World Development, Evaluation, and Application of Active Learning
Kevin Jamieson, Lalit Jain, Chris Fernandez, Nick Glattard, Robert Nowak, NIPS, 2015 PDF

Communication – Presentations

NIPS 2014 Human Propelled Machine Learning Workshop - Invited
talk (12/13/2014)�Introduction of the Next.Discovery computational framework and system that
simplifies the deployment and evaluation of adaptive learning algorithms that use actual human
feedback.

AMP Lab UC Berkeley - Invited talk (12/2/2014)�An overview of the methods and challenges
of adaptive sampling algorithms.

COLT 2014 - Oral paper presentation (6/15/2014)�A presentation of the paper "lil' UCB : An
Optimal Exploration Algorithm for Multi-Armed Bandits"

CISS 2014 - Invited talk (3/17/2014)�An overview of active ranking (see my publications) and

how adaptive sampling with pairwise comparisons differs from function evaluations.

Communication – Open Source

The open-source project is on github: https://github.com/kgjamieson/NEXT with tutorials on
how to use it.

https://github.com/kgjamieson/NEXT
http://homepages.cae.wisc.edu/~jamieson/resources/next.pdf
http://arxiv.org/pdf/1306.3917
http://homepages.cae.wisc.edu/~jamieson/resources/jamieson14_LilUCB.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6814096
http://arxiv.org/pdf/1502.00133v1.pdf

CONCLUSION:

This research has provided considerable insights into the nature of active learning, producing

numerous published results. In addition, these ideas and breakthroughs have been realized in the

NEXT system, which has been deployed as an open source project.

The analyst-in-the loop approach to labeling data in production systems, while extremely useful

for data analysis, can be prohibitively expensive. This research drastically reduces the cost by

enabling real-world experimentation for active learning in a flexible, extensible framework. We

anticipate this will lead to new understandings and breakthroughs, just as it has for passive

learning.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear

Security Administration under Contract DE-AC04-94AL85000.

